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The energy spectrum of Ne21 below 6 MeV and some ground-state and excited-state properties are dis
cussed in terms of a model implying the coupling of a s-d particle to a rotational Ne20 core. Fair agreement 
with the experimental data is obtained. A comparison with the standard collective model calculations is 
given. 

1. INTRODUCTION 

THE model employed here for interpretation of the 
positive parity states of Ne21 below 6 MeV is 

essentially a version of the " core-particle coupling'' 
model. The idea of coupling an outside nucleon to a core 
is extensively used within the framework of the collec
tive and shell models. We find an interesting remark on 
the concept of a "core" in a paper by Lane.1 He 
calculates the positive parity states of N13 and C13 by-
coupling a 2s — Id particle to the "parent" configuration 
(lp)s of C12 and antisymmetrizing the wave functions of 
the combined systems properly. He states that even 
though the 2s— \p and Id— \p interaction integrals are 
as large as the lp—lp interaction integral, the coupling 
of the extra particle does not seem to disturb the core 
appreciably, as is confirmed by his results. Thus, the 
picture of the core does not seem to be crucially affected 
by the addition of a particle. 

Litherland el al? have shown that the spectrum of Ne20 

can be resolved into various rotational bands. The 
coupled system of the positive parity ground-state band 
of Ne20 and a 2s—Id neutron should represent the low-
lying and some of the higher positive parity states of 
Ne21 with isotopic spin T = | . The Hamiltonian of the 
total system Ne21 = Ne20+neutron takes the form 

x2 = x i c o r e -J- H neutron I ti coupling • \ 1 T J 

For the coupling of the outside particle and the core 
we will use an interaction term similar to the one em
ployed in the collective model: 

#coii. coupling = —f^vYLh ak
cYk(&p,<pP). (1.2) 

Usually only the term with k — 2 is taken into consider
ation. Furthermore, an extension of the discussion of the 
spin-orbit force in the framework of the optical model 
leads to the introduction of a coupling term between the 
particle spin and the angular momentum of the core of 
opposite sign as the spin-orbit coupling. 

By use of a rotational wave function for the core in
stead of a much more complicated four particle wave 
function, we gain much in simplicity of calculation; but, 
as in any collective model calculation of this type, we 

f Work submitted as a partial fulfillment of the requirements 
for a Ph.D. in Physics. 

1 A. M. Lane, Proc. Phys. Soc. (London) A68, 197 (1956). 
2 A. E. Litherland, J. A. Kuehner, H. E. Gove, M. A. Clark, and 

E. Almqvist, Phys. Rev. Letters 7, 98 (1961). 
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lose the possibility of antisymmetrizing our coupled 
wave functions with respect to exchange of the addi
tional particle and the core particles, for we do not know 
the dependence of the collective coordinates on the 
single-particle coordinates. The validity of this approxi
mation has not been examined in detail so far.3 

If we consider the number of levels obtained by apply
ing the SUz classification scheme4 to Ne21, we can at 
least give some crude improvements on this situation. 
Assuming the Ne20 ground-state band to be of the spatial 
structure 

[4] , (8,0) with 1=0, 2, 4, 6, 8 (K=0); 

(QQ partition of the number of particles, corresponds to 
multiplet classification; (X,/x) partition of irreducible 
representation of SUz), we find that the addition of 
another s—d particle gives the levels 

[41], (8,1) with 1=1, 2, 3, • • . , 9 (K=l) 

(6,2) with Z= 2, 3, 4, • • •, 8 (K= 2) 

Z=0, 2 ,4 , 6 ( i t = 0 ) . 
The possible partition 

[5 ] , (10,0) with 1=0, 2, • • . , 10 (K=0) 

is excluded by the Pauli principle. 
If we work in j—j coupling rather than L—S cou

pling, we have to consider bands with 
TT— 5. 3. 3. 1 1 JV~ 2) 2? 2? 2? 2 J 

and have to exclude a band with 

K=\. 

In the course of the diagonalization of H we will see, 
that it is necessary to introduce a band quantum num
ber K, which is identical with the collective model K. 
Thus, a straightforward procedure would be to drop one 
of the bands with K=\ from the further calculation. 
Another method would be to choose the parameters of 
the interaction in a way to throw one band with K=0, 
lp= 2 in L—S coupling high up and so allow a small ad
mixture in the final lower states. This procedure seems 
reasonable as the SUz wave functions for Ne21 are 
thorough mixtures of 5 particle wave functions. I t can 
be achieved by taking the next contributing term of the 
interaction (1.2) with k = 4 into consideration. 

8 A. de Shalit, Phys. Rev. 122, 1530 (1961). 
4 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958). 
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The Ne20 ground-state band is not ideally rotational. 
We will approximate this situation by taking a variable 
moment of inertia for the states with different L and re
taining simple collective model wave functions for the 
core. With this approximation the f and f states turn 
out too low by approximately 10% and 20%, respec
tively. If we change the parameters of (1.2) for the Lc— 6 
state by a factor (1— a)in, it is found that for a value of 
a = 0.2 (corresponding to a change of approximately 
10% of the wave function), agreement with experi
ment is improved. 

The second section gives a collection of the available 
experimental data for Ne20 and Ne21. It is followed by a 
review of the previous theoretical interpretations of 
these data in Sec. 3. In Sees. 4 and 5 a discussion of the 
Hamiltonian (1.1) and of the diagonalization process is 
given. In Sec. 6 some moments and transition probabili
ties are calculated. 

2. EXPERIMENTAL DATA 

(a) Ne20 

The Canadian Chalk River Group has carried 
out quite extensive work on Ne20 using the reaction 
C12 (C12,«7)Ne20. The resulting energy scheme is given 
in Fig. 1. A slight deviation from the rotational pattern 
is noticeable. If we assume a form of the spectrum of 

E=CLL(L+1) = —L(L+1), (2.1) 
26L 

we find for the ground-state band 

C2=0.27 MeV, C4=0.21 MeV, C6=0.18 MeV. 

The 7.60 MeV level with LT=6+ is not definitely 
established. 

The lifetimes of the 2+ and 4+ levels of the ground-
state band have been determined by Clark et ah5 by the 
Doppler shift attenuation method. The results are 

10J 

r(1.63 MeV)= (5.6__i.2
+28)X10-13 sec 

r(4.25 MeV)= (0.76_o.52+0-72)X10-13 sec. 
(2.2) 

The lifetime for the 1.63 MeV state is in agreement with 
the value of (7.6db3.3)X10~13 sec given by Devons 
et a/.6 and the value of 7.6X10"13 sec determined by 
Lemberg7 from the Coulomb excitation of Ne20. 

(b) Ne21 

Experimental investigations of Ne21 energy levels have 
been carried out by several workers, using the reac-

6 M. A. Clark, H. E. Gove, and A. E. Litherland, Can. T. Phys. 
39, 1241 (1961). 

6 S. Devons, G. Manning, and J. H. Towle, Proc. Phys. Soc. 
(London) A69, 173 (1955). 

7 1 . Kh. Lemberg, in Proceedings of the Second Conference on Re-
actions between Complex Nuclei, 1960, edited by A. Zucker, E. C. 
Halbert, and F. T. Howard (John Wiley & Sons, Inc., New York, 
1960), p. 118. 

FIG. 1. Energy 6 
spectrum of Ne20 

from Ref. 1. 
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tions O18(«,*0Ne21, Ne20(^)Ne21, Na23(^,a)Ne21, and 
F19(He3,^)Ne21. The results of the papers before 1959 
are summarized in Hinds and Middle ton,8 who use the 
last reaction. A more recent investigation of the reac
tion Ne20(d,£)Ne21 was made by Freeman.9 Nearly all 
the 60 levels measured by Hinds and Middleton are ob
tained in Ref. 9 also. The available spin and parity 
assignments are mostly determined from the angular 
distribution curves of the (d,p) reaction and are given 
by Burrows et a/.10 

Using also the Nuclear Data Sheets11, we can infer the 
illustrated spectrum for Ne21 states below 6 MeV. (See 
Fig. 2.) We can get more information about probable 
spins and parities of yet unassigned states by consider
ing the mirror nucleus Na21. There is a quite recent 
summary of the available results by Ajzenberg el a/.,12 

who investigated the reaction Ne20(J,^)Na21. 
Analysis of the angular distribution curves was 

carried out by a distorted-wave Born approximation 
(DWBA). The 1.73-MeV state gives no agreement for 
/=0, 1, 2, so an assignment of | + is tentatively sug
gested. The indicated transitions13 for the 2.86-MeV state 
would give a J* of J + >/ 7 r >f + for E2 and J7r=f+ for 
Ml transitions, if we assume the 1.73 and 3.57 MeV 
states to be | + and f+, respectively. The f+ assignment 
is supported by the existence of a similar state in that 
energy region in Na23 (see Gove14). 

The quadrupole moment of the ground state of Ne21 

8 S. Hinds and R. Middleton, Proc. Phys. Soc. (London) 74, 779 
(1959). 

9 J. Freeman, Phys. Rev. 120, 1436 (1960). 
10 H. B. Burrows, T. S. Green, S. Hinds, and R. Middleton, 

Proc. Phys. Soc. (London) A69, 310 (1956). 
11 Nuclear Data Sheets, compiled by K. Way et al. (Printing and 

Publishing Office, National Academy of Sciences-National Re
search Council, Washington 25, D. C ) , NRC60-5-3. 

12 F. Ajzenberg-Selove, C. Cranberg, and F. S. Dietrich, Phys. 
Rev. 124, 1548 (1961). 

13 P. M. Endt, and C. van der Leun, Nucl. Phys. 34, 11 (1962). 
14 H. E. Gove, in Proceedings of the International Conference on 

Nuclear Structure, Kingston, edited by D. A. Bromley and E. W. 
Vogt (University of Toronto Press, Toronto, 1960), p. 450. 
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FIG. 2. Comparison of measured and calculated energy spectrum 
of Ne21. (a) Energy spectrum of Ne21 from Refs. 8-9 and Nuclear 
Data Sheets (See Ref. 11). (b) Calculated energy spectrum of Ne21 

case (b). (c) Energy spectrum of Na21 from Refs. 12, 13. (The Na21 

ground state is 3.53 MeV above the Ne21 ground state.) 

has been determined by Grosoff et a/.15 from the hyper-
fine structure as 

QM = e(+0.093=i=0.010)X10-24 cm2. (2.3) 

The magnetic moment of this state is given by La 
Tourette et a/.16 as 

M M = -0 .662 nm, (2.4) 

using the molecular beam magnetic resonance technique 
and taking into account the diamagnetic corrections. 

Andrev et al.17 have investigated the Coulomb excita
tion of the first excited level (the same results are re
ported also by Lemberg18). They found that the transi
tion f+ —» f+ was mainly of the E2 type with a reduced 
matrix element of 

5(JS2,f+-,2 • — f+) = 0.025X10~48 cm4. (2.5) 

This value would correspond to a partial lifetime for the 
15 G. Grosof, M. Buck, W. Lichten, and I. Rabi, Phys. Rev. 

Letters 1, 214 (1958). 
16 J. T. La Tourrette, W. E. Quinn, and N. F. Ramsey, Phys. 

Rev. 107, 1202 (1957). 
17 D. S. Andrev, K. I. Erokhin, and I. Kh. Lemberg, Isv. Akad. 

Nauk SSSR, Ser. Fiz. 24, 1478 (I960). 
1 8 1 . Kh. Lemberg, in Proceedings of the Second Conference on Re

actions between Complex Nuclei, I960, edited by A. Zucker, E. C. 
Halbert, and F. T. Howard, (John Wiley & Sons, Inc., New York, 
1960), p. 126. 

f+ state of 
r^ 2 «9.2X10" 1 0 scc . (2.6) 

A direct measurement of the lifetime by Khabakhpashev 
and Tsenter19 gives 

r = (6.2dz6.2)X10"n sec, (2.7) 

and from the angular correlation they determined the 
transition to be mainly Ml.20 Deuchars and Dandy21 de
termined the ratio 8 of the amplitude of the electric 
quadrupole transition to the amplitude of the magnetic 
dipole transition from the angular distribution curves as 

4X10- 3 <5<3X10" 2 . (2.8) 

From the lifetimes given in (2.6) and (2.7) we can cal
culate the partial lifetime TM\ of the f+ state by 

TE2T 

7"M1 = _ 

TE2~~T 

as 
(2.9) TMI= (6.67_6.r8

 + 7-6 1)X10-"sec. 

With the values (2.6) and (2.9) we find for 

L r ( i i f i ) J ITE2J 

5=(27_i7.2 + u )Xl0- 2 . 

These values of 8 are higher than the values given by 
Deuchars and Dandy. 

If we use the estimate 
5 

£ S P ( £ 2 H - - ( f # o 2 ) 2 (2.10) 
4 T 

with 
2e0=1.241 /8X10^18cm, 

for the single-particle transition probability (see for 
example Alder et al.22), we find for the ratio F of the 
measured transition probability (2.5) to the single 
particle estimate 

F ( * - $ ) « 1 5 . 

The /3+ decay of Na21 to the Ne21 ground state is 
superallowed with a log / / of 3.6. There is a branch of 
2.2% to the first excited f+ state with a log / / of 5.0.13 

3. PREVIOUS THEORETICAL INTERPRETATIONS 

(a) Ne20 

A straightforward theoretical interpretation can be 
given with the collective model assuming a Hamiltonian 

HC0T,~C(L)2 (3.1) 
19 A. G. Khabakhpashev, and E. M. Tsenter, Zh. Eksperim. i 

Teor. Fiz. 37, 991 (1959) [translation: Soviet Phys.—JETP 10, 
705 (I960)]. 

20 A. G. Khabakhpashev, and E. M. Tsenter, Isv. Akad. Nauk 
SSSR, Ser. Fiz. 23, 883 (1957). 

21 W. M. Deuchars, and D. Dandy, Proc. Phys. Soc. (London) 
77, 1197 (1961). 

22 K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, 
Rev. Mod. Phys. 28, 432 and 439 (1956). 
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with eigenfunctions 

\LM#L)=Xto*nfcKLYLM&e,<Pc). ( 3 . 2 ) 

For the ground-state band with KL—0 the energy is 
then given as in (2.1). 

The deviation from the pure rotational character 
cannot be explained in terms of the usual first-order cor
rections to the collective rotational bands. The rotation 
vibration interaction23 

HR V= -constL2(L+l)2 (3.3) 

does not account for the deviations (it should be signifi
cant at the beginning of a shell, where the rotational 
spacing is large). The rotation particle coupling (RPC)24 

does not give any contribution, for there is no nearby 
interacting band with KL= 1 and positive parity. 

Shell-model type calculations using the SU$ classi
fication scheme have been carried out by Chacon and 
Moshinsky25 and Banerjee et a/.26 

(b) Ne21 

The simplest version of the shell model predicts a 
ground state of f+ for Ne21, a magnetic moment of 
— 1.91 nm and a quadrupole moment of zero. Flowers27 

has calculated an improved value of —1.27 nm for the 
ground-state magnetic moment by considering the con
figuration (̂ 5/2)5 with total / = § and T= \. He also in
dicated that the quadrupole moment of odd neutron 
nuclei can be improved by an appropriate coupling of 
proton pairs and neutrons. Rakavy28 performed some 
preliminary calculations in the region beyond O16 using 
the Nilsson model. For Na23 and similarly for Ne21 and 
Na21 he predicts above the ground state of | + and the 
first excited state of f+ a state of J = § + . Approximately 
1 MeV above the | + state should be a ^+ level. A | + and 
a f+ level should appear between 3 and 4 MeV. Paul and 
Montague29 considered another type of collective model 
calculation for Na23. They arrange three rotational bands 
based on K—§, f, § so as to reproduce the lowest §+, f+, 
and | + levels by means of the RPC interaction between 
the bands. 

This version was applied to Ne21 by Freeman.30 She 
obtains roughly the following spectrum for Ne21: 

/* f+ | + J+ J+ f+ f+ f+ f+ J+ 

£Mev 0 0.35 1.35 2.80 2.85 3.00 3.55 5.15 5.25. 

A more recent investigation of the Nilsson model in 
23 S. A. Moszkowski, in Handbuch der Physik, edited by S. 

Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 532. 
24 A. K. Kerman, Kgl. Danske Videnskab. Selskab, Mat. Fys. 

Medd. 30, 4 (1956). 
25 E. Chacon, and M. Moshinsky, Phys. Letters 1, 830 (1962). 
26 M. K. Banerjee, C. A. Levinson, and S. M. Meshkov, Phys. 

Rev. 130, 1064 (1963). 
27 B. H. Flowers, Phil. Mag. 43, 1330 (1952). 
28 G. Rakavy, Nucl. Phys. 4, 375 (1957). 
29 E. B. Paul, and J. H. Montague, Nucl. Phys. 8, 61 (1958). 
30 J. Freeman, in Proceedings of the International Conference on 

Nuclear Structure, I960, edited by D. A. Bromley and E. Vogt 
(University of Toronto Press, Toronto, 1960), p. 447. 

the s—d shell is given by Bhatt.31 In the case of Ne21 he 
found that for a value of the deformation parameter rj 
of 77=3 a magnetic moment of —0.60 nm can be ob
tained, while the fit of the energy spectrum is rather 
poor. The E2 transition probability for the f+ ground 
state and f+ first excited state transition turns out too 
low even for 77=4. Furthermore, in the case of larger 
deformations the agreement with the magnetic moment 
deteriorates.308 

4. THE HAMILTONIAN OF THE SYSTEM 
Ne21 = Ne20-h2s-ld NEUTRON 

For the fi^-part of the Hamiltonian (1.1) we take 

ffp=r+F(rp)-JD(s.l), (4.1) 

where V(rp) is any shell-model single particle central 
potential and the parameter of the spin-orbit force D is 
greater than zero. 

The corresponding normalized j—j coupling wave 
function then takes the form 

= E {\lj)msmim0)\\ms)\n=2\lmi), (4.2) 
W 1,171s 

where (^Ij;msmimj) is a Clebsch-Gordan coefficient 
and 

\n=2;1ml)=:RlW(rp)Ylm(&PJ<pv) (4.3) 

is an eigenfunction of Hp' = T-\-V(rp). 
For £TCore we use the collective model Hamiltonian 

introduced in (3.1) and (3.2). 
The following argument leads to the first term of 

•̂ coupling-* In an optical-model calculation (the shell 
model is essentially a version of the optical model with
out the absorptive (imaginary) part of the potential) 
the spin-orbit force is introduced in the following way.32 

Consider the scattering of a nucleon with spin s and 
initial and final momenta k*, k/. The lowest order 
scalar term that can be constructed from these quanti
ties is 

Ixocs-^-Xk/). (4.4) 

The spin orbit potential is then given by 

Ux(r) oc f exp(f Ak.r)[s- (k,Xk/)]p(Ak>P(Afc), (4.5) 

where Ak=k/—k4 is the momentum transfer, and p is 
3i K. H. Bhatt, Nucl. Phys. 39, 375 (1962). 
3081 Note added in proof. While this article was in press a survey 

of the odd A nuclei in the s-d shell using the asymmetric core 
collective model was published by Chi and Davidson p?hys. 
Rev. 131, 366 (1963)]. Their more detailed model employs a 
smaller number of parameters than the usual Nilsson model and 
the model presented in this paper. While the results show a good 
fit of the energy spectra and a reasonable fit of the ground state 
magnetic moments, the ground state quadrupole moments and the 
lifetimes of the first excited states do not agree so well with the 
measured values. 

32 D. C. Peaslee, Ann. Rev. Nucl. Sci. 5, 118 (1955). 
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the density distribution of the scatterer (presumed to be 
spherically symmetric). Evaluation of the Fourier in
tegral (4.5) gives 

ldp(r ) 

Ul{r)oz ( s .D, (4.6) 
r dr 

where 1 is the angular momentum of the particle. 
In our case we are not only concerned with the scat

tered particle, but with the interacting particle (or par
ticle group) in the scatterer too. So we have to work in 
the corresponding center-of-mass system and consider 
the term 

/ t o c s - ^ X K / ) , (4.7) 

where Kt, K/ are the initial and final momenta of the 
struck particle. 

If we take into account that in the c m . system the 
momenta of the scattered and the struck particle are in 
opposite directions, evaluation of the corresponding 
Fourier integral yields 

1 dp'ir) 
U2(r)a: ( s -L) , (4.8) 

r dr 

where L is the angular momentum of the struck 
particle. 

If we take the proportionality constants in (4.6), 
(4.8) (including the Thomas term) negative, we get be
sides the spin-orbit force in Eq. (4.1) the term 

+ P ' ( s . L ) , (4.9) 

which couples the particle spin to the angular mo
mentum of the core. 

As p represents the density of the whole core, pf the 
density of the core minus the struck particle group, we 
should have to the first order D'<D, but exchange 
terms are neglected in this argument. If we believe in 
this phenomenological approach, we can say the follow
ing. In other rotational nuclei where a particle with a 
/ = ! + could be coupled to a rotational core (see Ref. 
22,), we find that the | + and | + levels, which would be 
degenerate in the absence of spin-orbit forces, split up 
into a lower f and a higher % state. This could be inter
preted by a force of the type (4.9). (The collective model 
uses the "decoupling" term.) 

For the coupling of the particle [described by Eqs. 
(4.1) and (4.2)] and the core we use a 2*—2k pole force 
of the usual form 

Hc,p=j:kak(Rc,rp)(2k+l)Pk(cosec,p). (4.10) 

For the coupling of a particle with i = i , §, § to a core 
with an angular momentum of Z,=0, 2, 4, • • • only the 
terms with £ = 2,4 give contributions, so that 

HCtP=H2+H,, (4.11) 

where 

H2=a2(RC)rp) £ ( - ) " < 
Af»—- 2 

X Y2>Mi(#c,<Pc)Y2,-Mi($p,<PP) , (4.12) 

H4=a*(Re,rp) E (~)M< 

X YitMi (#c, <Pc) Yi-Mi (&P> <PP) • 

The total Hamiltonian of Ne21 then takes the form 

H=HC+Hp+D(s-L)+H2+Ht, (4.13) 

where the different parts are given by (3.1), (4.1) and 
(4.12). 

5. DIAGONALIZATION OF THE HAMILTONIAN H 

The diagonalization of H is carried out in the follow
ing steps. We choose as a zero-order wave function 

\JM,Lj}= £ (LiJ;MLmiM)\LML)\jm>), (5.1) 

the Clebsch-Gordan coupled wave function of the core 
and the outside particle, and consider the part 

H(1) = HP'+H2 

= T+V(rp)+H2, (5.2) 
of the Hamiltonian. 

In the representation (5.1) the matrix elements of 
Hp are already diagonal and we fix our preliminary en
ergy scale by taking 

(J,Lj\Hp'\J,Lj)=Edj.i, (5.3) 

where E is the separation of the / = 0 and 1=2 levels. 
We can omit the dependence on the magnetic quantum 
numbers, as no term in our Hamiltonian splits this 
degeneracy. 

The diagonalization of H2 can be carried out explicitly, 
if we retain j as a good quantum number. Introducing 

Q2= + (f2M(l=2\a2(rp)\l=2) 

X<intr|a,(JKe)|intr>, (5.4) 

under the assumption that <x2(Rc,rP) is of the form 
f20i2(rp)a2(Rc) and a new quantum number K, which will 
be discussed below, we obtain the following diagonal 
elements (independent of / ) : 

i=l 
(JAKtlHtlJ&Ki)** - (5/14)22 

< / , f i f 2 | f l r
2 | / J ^ 2 )= ( l /14 )G2 

< / , p : , | F , | / , $ * , > = (2/7)01 
i = f (5.5) 

(J,lKt'\Hs\J,iKt')=-iQt 

{J±K3"\H2\JMz")=0. 
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The corresponding eigenfunctions are of the form 

\JM,jK)=Y,LaK
J>KL)\JM,Lj)y (5.6) 

where the expansion coefficients a,KJ'j(L) can be cal
culated with standard methods. 

It can be seen in the following way, that the quantum 
number K introduced here is identical with the collec
tive model Kj, the projection of the particle angular 
momentum on a body-fixed axis. We rewrite Eq. (5.6) by 
transforming the right-hand side to a nuclear coordinate 
system as 

| M , j i ) = I E f e J ' ' ( i ) 
-2(2L+1)-|1/2 

. (2/+1) J 

where 
XiLjJiOKjKjyVxv'iL), (5.7) 

-[ 
2/+1-11 '2 

16x; 
XKL^L){S>MK/\JK}) 

+ ( - ) ' - ' S W / l i - * i » , (5.8) 

is a strong coupling wave function, if the intrinsic core 
function X0

(L) in the body-fixed system is independent 
of L (purely rotational core). It should be stressed at 
this point that we use a spherical rotator for the core 
(KL=0) rather than the collective model picture (see 
Discussion C). The £) are symmetric top eigenfunctions 
and \jKj) are the odd-neutron eigenfunctions in the 
body-fixed system. If we have a purely rotational core, 
we can execute the sum over L. For a proper choice of 
phase of the aKJ'3(L) we obtain 

£ «*'•'(£) 
•2(2£+l)-|1/2 

- (27+1) J 
(LjJiOKfK^SKKr (5.9) 

So we see that in this case our eigenfunctions (5.6) are 
identical with the strong coupling wave functions (5.8). 
We then have 

1-2 

Kz=Kz = Kz = § , 

and the O,KJ,'(L) c a n De given by the closed expression 

r2(2Z+l)-i1 '2 

aK
J-'(L) = \ . . . . „ I (LjJ;QKK). (5.11) 

L (2/+1) "J 
The terms H2 and Hi are invariant under rotations. 

Then we can choose a coordinate system (see e.g. 
Rose33), that 

fl**rM(0,o). 
As the coupling rule for spherical harmonics gives 

r4o=MF20)
2+&2Foo+&3F2o, 

we find that the eigenfunctions (5.6) diagonalize Hi 
83 M. E. Rose, Elementary Theory of Angular Momentum (John 

Wiley & Sons, Inc., New York, 1961), p. 94. 

also. We obtain 

(J,%K\Ht\JAK)=0 

(J,iK\HA\J,iK)=0 

< / , H l f l 4 | / , H H (3/28)04 
</,ff!^4l7,ff)=-(9/28)Q4 

< J , H | f l 4 | / , H H (6/28)04, 

(5.12) 

with 

u £>4=— (/=2|a4(rp)|/=2)(intr |a4(^)|intr). (5.13) 
x 

If we write 
(L)2=(J-j)2=J2+i2-2J-j (5.14) 

we obtain the rotational part of the collective model 
Hamiltonian for an odd-̂ 4 nucleus.34 The coupling term 

—2(J-j —J«-j.) (5.15) 

represents the RPC.24 The diagonal elements of Hc 

in the representation (5.6) can be written in the form 

(J,jK\Hc\J,jK)=C{J(J+l)+j(j+l) 

-2JF+(-) ' - " ( /+*) CH-i)8*i>. (5-16) 
which corresponds to the expression used in the col
lective model, if we take a value of 

for the decoupling parameter (Ref. 34). This choice 
stems from the special form of the strong coupling wave 
function (5.8). 

For the final diagonalization of the total Hamil
tonian H in the representation (5.6), we have to con
sider the following parameters: 

Here 
Q2Q2'Q4;D;Dt'Do';E;C. (5.17) 

(?*' = (/2/7r){/=2|a2(^)U=0)(intria2(iec)|intr) (5.18) 

(5.10) is the Hi interaction parameter between j=§ and j=f, 
states. The parameter D' for the coupling of particle 

spin and angular momentum of the core is subscripted 
to allow for a different coupling strength in the case of a 
j=h particle (ZV) and a j = f, f particle (ZV). 

If we assume the term H2+H4 to stem from a short-
range force of the Yukawa type 

F(rp,Rc) oc 
exp(—ju|Rc—r„|) 

(5.19) 
ju|Rc—rp\ 

we find after suitable expansion the relations 

+0.33<(C4/<22)< + 1.00 

- 0 . 6 0 ^ (Gt7G»)^-0.10 for 0 < M < ° O , (5.20) 

by using harmonic oscillator wave functions for the 
34 S. A. Moszkowski, in Handbuch der Physik, edited by S. 

Flttgge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 482, 487. 
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particle and the radial density distribution 

A-1C2) 

p(Rc)= E Z2(2l+l)uAl*(Rc) 
A=0 I 

(with radial harmonic oscillator UM) for the core. 
If we assume Hi+Ht to be a long-range potential of 

the usual 2k pole interactions with 

a2 = f2(»'rpy{ix'Rc)
2 

a,=f^frpy^Rcy7 

(5.21) 

we get with the same wave functions for core and par
ticle as used in the calculation of (5.20) 

(Qi/Q2) = lS(j4/fi)W/a¥ 
(QJ/Q*)=-0.9, 

(5.22) 

where a is the inverse of the "shape parameter" for the 
harmonic oscillator wave functions. 

For the parameter D we can get an estimate from 
O17 (see Ajzenberg-Selove and Lauritsen35): D= 2 MeV. 
Kurath36 has examined the variation of this parameter 
in the p shell. He found that the curve of D plotted 
against the total number of nucleons A gives a smooth 
increase up to 4̂ = 8 with D^2 MeV, a steep increase 
between .A = 9-12 and a smooth increase to Z)~5 MeV 
at the end of the shell. If we anticipate a similar be
havior in the s—d shell, we would have a parameter D 
between 2.5 and 4.5 MeV. Do and D2 are essentially 
free parameters, though one would expect 

£ > Z V « 2 V > 0 . 

To account for the differing C values of the L states of 
the core, we calculate the matrix elements of Hc with 
the energy values of the ground-state band of Ne20 as 
given in Fig. 1. The separation of the 1=2 particle and 
the 1=0 particle E can be taken from O17 to be approxi
mately — 1.1 MeV. With the filling of the shell one 
would expect this separation to get smaller, as the 
centrifugal repulsion on the d particles decreases. 

As pointed out in the Introduction there are two ways 
to account for antisymmetrization; (a) Not taking the 
7 = f, K=\ band into account, assuming that the j=\ 
subshell is filled first, (b) Lifting a band with K=0,1= 2 
in L—S coupling up by a proper choice of the param
eters. The final diagonalization of the Hamiltonian H 
for these two possibilities was carried out on an IBM 
1620 with various sets of the parameters (5.17). It was 
found that the parameters (in units of MeV): 

(a) ()2=-6.25 Q2' = +4.00 Q*=0 

ZV= 0.5 ZV = 0.4 D= 

E=-

4 

-0.15 

(5.23a) 

85 F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 222 
(1959). 

36 D. Kurath, Phys. Rev. 101, 216 (1956). 

.(b) 62= +9.80 
D= 3.3 

£ = - 0 . 7 1 
(and 

C2= 0.27 

Q,'— 

ZV = 

c4= 

-7.70 

1.2 

0.21 

<?4« 15.85 

ZV= 0.7 

C6= 0.18 

(5.23b) 

in both cases) yield a fair fit for the | + , f+, f+, and £+ 

states of Ne21 below 6 MeV. 
The spin-core coupling strength for the 1=0 particle 

is slightly bigger than for the /= 2 particle in both cases. 
This might be due to the fact that in the 1=0 case the 
spin-orbit strength is zero and for this reason the spin 
couples more strongly to the core. The parameters D 
and E show a greater deviation from the O17 values in 
case (a) than in case (b). The values of Q2, Q2, and Q± 
favor the long-range case, though in both cases we find 
a smaller ratio of | Q2/Q21 than the estimate of 0.9 ob
tained with harmonic oscillator wave functions. 

If we readjust our energy scale by putting JEgrOund==0, 
we can list the following levels: 

2.77, 10.01 (MeV) 
0 , 3.67, 8.76, 12.09 (MeV) 

:0.37, 2.83, 4.81, 11.62, 13.88 (MeV) 
4.37, 5.83, 10.10, 14.37 (MeV) 
6.00, 7.84, 14.32, 17.55 (MeV) 

(5.24a) 
(b) / = ! + : 2.81, 5.55, 24.25 (MeV) 

7=f+ :0 , 3.72, 5.34, 10.38, 23.70 (MeV) 
/=-!+: 0.35, 2.79, 3.85, 8.17, 11.65 26.58 (MeV) 
7=|+:1.60, 4.26, 5.68, 6.94, 13.16, 25.31 (MeV) 
7=f+:2.92, 5.68, 6.49, 11.88,14.81, 30.09 (MeV) 

(5.24b) 

(The states above 20 MeV in case (b) are nearly pure 
K=0, 1=2 states, as can be seen by transforming rep
resentation (5.6) into the L—S coupling picture.) The 

(a) / = * + • 

/=f+: 
T—S.+ . J — 2 • 

/= !+ : 1.52, 
/=f+:2.81, 

p . 

4 . 

2 . 

0. 

5.83 

4.61 

437 

3.67 

2£3 
2.81 
2.77 

1.52 

037 

0 

712 5J68 
S.55 

5ft 

7 / 2 ^ 4 . 2 6 

3.85 
3ft *•? 

f^i 

H2^m 

3ft 0 

7/2 

m 

FIG. 3. Calculated 
energy; spectrum of 
Ne21 for cases (a) 
and (b). 
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TABLE I. Comparison of theoretical and experimental energy levels of Ne21 below 6 MeV. 

E 
Calc. (a) 

/ Dev. 
Calc. (b) 

/ Dev. 
Meas. 

E J Comments on assignment of meas. level 

0 
0.37 
1.52 
2.77 
2.83 
2.81 

3.67 

4.37 

4.81 

. . . 

! 
f 
7 
2 

4 
5 
2 
9 
2 

i 

7 
2 

5 
2 

+6% 
- 1 2 % 

~ 1 % 
- 1 % 

- 2 5 % 

- 2 % 

" 1 % 
- 7 % 
+ 6 % 

0 
0.35 
1.60 
2.81 
2.79 
2.92 

3.72 

3.85 
4.26 

5.34 
5.55 

5.68 

i 
2 

# 
7 
2 

4 
5 
2 
9 
2 

3 
2 

5 
2 
7 
2 

"t 
1 
2 

7 9 
2>2 

- 8 % 
+2% 
- 3 % 

- 2 0 % 

+2% 

- V % 
- 4 % 

- io% 

? 

0 
0.35 
1.74 
2.79 
2.87 
3.66 
3.73 
3.66 
3.73 
3.88 
4.43 
4.68 
4.53 
5.33 
5.55 

-i 
4 
2 

(I) 
1 
2 

(!) 
? 

(f 

> 

? 

? 

f) 
? 
? 

5.83 

Suggested for Na21 by Ref. 12. 

From transitions in Na21. 
A | level in Na23 at 2.71 (see Ref. 13, p. 5) 

would support a f level in that region. 
From comparison with Na21 one of these levels 

should be a f. 

No | level observed in this region. 

Could be 5.42 (f ,f). 
§ level in Na21 at 5.47 MeV. 5.33 or 5.55 levels 

open to the assignment of J. 

high-level density and paucity of spin and parity assign
ments for the experimental levels above 6 MeV do not 
allow any definite interpretation in this region. 

The possible breaking off of the rotational spectrum 
for Ne20 or the fact that we put all the deviation from 
the pure rotational structure into the parameter C in
stead of modifying the wave functions, could well ac
count for the growing deviations from the measured 
levels in the case of the j and § states. 

We write Q*(L,L'\ (V (£,£'), (?4(£,£') instead of 
the parameters Q^ (V, Q^ which are independent of L 
and introduce the following modifications: 

C(L,L') = e f o r L , L V 6 

G(6,L) =e(L,6)=(l-a) i /*g 

0(6,6) = ( l - a ) e . 

This change effects only states with / > | . If we cal
culate the matrix of the total Hamiltonian H for / = J, § 
in representation (5.1) and carry out the diagonaliza-
tion with the parameters (5.23b) for different values of 
a, we find that for a=0.2 the lowest f level coincides 
with the measured level within 1% and the lowest § 
level shows a deviation of approximately 7% only. 
(Compare Table I). We have not accounted for some 
positive parity levels in the region 4-5 MeV. They 
could probably arise from the coupling of a f—p par
ticle of a p hole to the negative parity states of Ne20, or 
from the coupling of a s—d particle to the higher posi
tive parity bands or a more complicated configuration. 
(For level schemes see Figs. 2 and 3.) 

The final eigenfunctions take the form 

|/,M>= £ cJ(j,K)\J,MjK), (5.25) 
i,K 

where the cJ(j,K) can be given numerically. For further 
convenience we note the c's of the ground state and the 

first excited f+ and | + states for cases (a) and (b) in 
Table II. 

6. CALCULATION OF MOMENTS AND 
TRANSITIONS 

The quadrupole moment operator of our system can 
be written as 

QNe2i = = <2core+Cn ) 

where Qn is zero. Qc is given by the usual definition 

Qc = QM=Ze LTJ £c2F20(tWc). (6.1) 

If we evaluate the quadrupole moment for the ground 
state J~M~\ using the representation (5.25) we ob-

TABLE II . Expansion coefficients cJ(j,K) 
in the final wave functions. 

J 
1 
2 

3 
2 

5 

5 
2 

1 
1 . 
2 

5 
3 

1 
2 

\ 
5 
2 

3 
2 

\ 

K 
i 
2 

\ 
i 
3 
2 

1 
! 
l 

i 

i 
1 
2 
1 
2 

I 
i 
i 

cJ(j,K) 
(a) 

0.1992 
0.9800 

0.9945 

-0.0920 
-0.0477 
-0.0165 

0.3962 
0.9117 

-0.0958 
-0.0491 
-0.0147 

(b) 

0.7802 
0.4632 
0.4205 

0.9947 
0.0478 

-0.0849 
-0.0107 
+0.0324 

0.3584 
0.9171 
0.1405 

-0.0880 
0.0281 
0.0463 
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tain for the cases (a) and (b) 

<t i\QM\i f ) = ^(0.0025^20+0.2421^22 
+0.1938(342-0.0404(244), (6.2a) 

<f I \ Q M \ i f)-^(0.0029^20+0.2515^22 
+0.1743(242-0.0315(244), (6.2b) 

where the QLU — QUL are the intrinsic moments de
fined by 

QLU = Z(intr (L) \ Rc
2 | intr (L')>. (6.3) 

If we assume the intrinsic moments all to equal Qo (this 
should be the case for a purely rotational core) we have 

(6.4a) 

(6.4b) 

<Ble^lHH«(0.398)Q0 

= e(0.397)<2o. 

We can determine the quantities Q20 and £42 from the 
lifetimes of the 2 + and 4 + states of the Ne20 ground-state 
band, which have been given in (2.2). 

We use the formula (see Elliott & Lane,37) 

[ rCE2;L;- •Lf)2~1=T(E2;Li 

1 4T/E. 1 47T/^A° 
= — ) e 2 B ( E 2 ; Li

ft 75\ he J 
•Lf), (6.5) 

where the reduced transition probabilities are given by 
(using the notation of Rose33 and Condon-Shortley38) 

of these quantities into Eq. (6.4) we find for the quad-
rupole moment 

(!f|<2^r|ff)= :^(0.134_o.03o-fo-053)X10-24cm2, (6.10) 

for cases (a) and (b). This is higher than the measured 
value of 6(0.093±0.01)X10~24 cm2. 

If we want to be more accurate we have to consider 
(6.2). Since we do not know the values of Q22 and Q*4, 
we can only get a linear equation in these quantities 

(0.38_0.4i+016)X10-25= (0.2421(222-0.0404044) (6.11a) 

(0.44_0.38+014)X10-25= (0.2515(222-0.0315(244). (6.11b) 

To determine Q22 and Qu we need further experimental 
information. We can get this form the measured value 
of the f+—> f+ E2 transition, given in (2.5). If we cal
culate the E2 transition with representation (5.25) 
according to (6.6) we obtain 

5(E2;f->f)=Kf||Z^F2(c)||f)|2 

1 
-(1.3250(22o-0.1028<222 

+1.1713(242+0.3560(244)2 (6.12a) 

20-0.0245(2 22 

+ 1.0625£42+0.2836(244)2. (6.12b) 

Uir 

B(E2-A-
1 

14x 
•*) =—(1 .44710: 

B(E2;Li- • i / ) = | ( L ; ] | Z ^ F 2 ( c ) | | £ / ) p 

( 2 £ / + l ) 

If we assume again that the intrinsic moments are equal, 
we have 

(2Li+l) 
{Lf\ZRcW2(c)\Li)\K (6.6) ^ ( £ 2 ; f - > f ) = (0.020_0.oo8+0-019)X10-48 cm4 (6.13) 

The second formula follows from the principle of de
tailed balance. 

As we have 

£ (£2 ;2 -+O)=( l /47r ) (0 2 O ) 2 

^ (£2 ;4 -^2 )=(5 /147r ) ( e 4 2) 2 , 

we obtain from Eq. (6.5) 

(&o)2=(47r/1.41)10-62(l/r2o) 

(e42)2=(147r/7.56)10-63(l/T4o). 

(6.7) 

(6.8) 

The sign of QLU is not determined by experiment; to fit 
the data we take it positive, which corresponds in the 
language of the collective model to a prolate shape for 
Ne20. (Nilsson model rj>0.) Then we find from Eq. (6.8) 
and the values for the lifetimes 

(6,9) 
(220= (3.99™0.73+0-51)X10-25 cm2 

£>42= (2 .77_O.79 + 2 ' 1 5 )X10- 2 5 cm2. 

If we insert the mean value 

Qo= (3.38_o.76+1-33) X10-2 5 cm2 

37 J. P. Elliott, and A. M. Lane, in Handbuch der Physik, edited 
by S. Flligge, (Springer-Verlag, Berlin, 1957), Vol. 39, p. 256. 

38 E. U. Condon, G. H. Shortley, Theory of Atomic Spectra 
(Cambridge University Press> New York, 1951). 

for both cases. The measured value of 0.025 X10~~48 falls 
well within these limits. 

If, on the other hand, we take the same procedure as 
for the quadrupole moment, we get a second linear 
equation in Q22 and Qu 

(1.96_0.72+1-89)X10-25=-0.1028(222 
+0.3560(244, (6.14a) 

( 1 . 7 7 _ 3 . O 2 + 1 - 9 0 ) X 1 0 - 2 5 = -0.0245(222 

+0.2836044. (6.14b) 

Solution of the system (6.11) and (6.14) yields 

<222= (2.62_3.38+1-61)X10-25 cm2 

<244= (6.25_9.95+5-78)Xl0-25 cm2 

<222= (2.54_2.87+1-40)X10-25 cm2 

044= (6.46_10.9i+6-80)X10-25 cm2. 

(6.15a) 

(6.15b) 

We see that the fit of the given experimental data leaves 
us too wide a scope for the quantities Q22 and Q^ For a 
more accurate determination we would need further 
experimental data on the remaining E2 transitions. 

The operator of the magnetic moment for our system 
is defined by 

Vs-Mo(frL+£zl+£.s), (6.16) 

file:///QM/i
file:///QM/i
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where we assume an equal gc for all the core states, gz=0 
for a neutron and g8= —3.83 nm (juo). 

If we apply the decomposition theorem of the second 
kind (see Ref. 3S)y we get in units of MO: 

<§!W§f>=f<f||yJ||!> 
=f(§lko(L2+L.j)+^(s.L+s.l+s^)|||). (6.17) 

Evaluation of this matrix element gives: 

<! §IM*|!§>=0.1964g8+0.5948gc (6.18a) 

= 0.2304g.+0.5116g0. (6.18b) 

To obtain the measured value of —0.662 nm we need a 
go of 

g c«0.15 in case (a) 

gc~0A3 in case (b) . 

Bauer and Deutsch39 have measured the gc values of 
the first excited states of Sm152, Gd154, and Gd156. They 
found that the values are (0.35=1=0.03), (0.367=1=0.03) 
and (0.32±0.03), which corresponds to a deviation from 
the Z/A values of 5-29%, if we consider the maximal 
errors. Our values show a deviation of 70% and 14%, 
respectively, from the Z/A value of 0.5 for Ne20. While 
the second value is reasonable in comparison with the 
results in Ref. 39, the deviation of the first value is 
rather large. 

If we assume that the wave functions for the Na21 

ground state can be approximated by taking the Ne21 

ground-state wave functions for a proton, we can give 
an estimate for theft values and transition probabilities 
of the /3 decay between these two nuclei (see Sec. 2). 
The reduced transition probabilities for Fermi and 
Gamow-Teller interactions for allowed 0+ transitions 
are40 

DF(O)=LI<;IT_|/>12 

DGT(0) = 4LK;|s.T_|/)|2, 

where s is the spin operator of the particle and T_ is the 
component \(T\—iT2) of the total isotopic spin. If we 
take the usual choice of the partial coupling constants 
as 

g(l-x)1/2 and g(x)1/2 (6.20) 

for Fermi and Gamow-Teller transitions, respectively, 
the comparative half-lifes may be written in the form 

ft=Bgt(l-x)DF(0)+xDG?(0)~]-K (6.21) 

Conventional values are 

£g=2.6X10 3 and # = 0 . 5 . (6.21a) 

Evaluation of the matrix elements (6.19) gives: 

39 W. Bauer, M. Deutsch, Phys. Rev. 128, 751 (1962). 
40 A. Bohr, B. Mottelson, Kgl. Danske Videnskab. Selskab, 

Mat. Fys. Medd. 27, 118 (1957). 

F o r f - + § 
DF =• 1 DGT=0.354 (case a) 

Z>F= 1 Z) G T=0.256 (case b) 
F o r f - > f (6.22) 

£ > F = 0 Z>GT=0.053 (case a) 

DF=0 DGT=0.049 (case b ) . 

With these values we find that the relative probabilities 
of the transitions are 

96%(97%) for §+ -> | + with a log ft value of 3.61 (3.58) 

4 % (3%) for f+ - » f + with a log ft value of 5.00 (5.02). 

for cases (a), (b). These values compare favorably with 
the measured values given in Sec. 2. 

7. DISCUSSION 

(A) General 

Basically the model contains three approximations: 
(1) I t is assumed that the addition of an extra particle 
does not disturb the Ne20 core crucially. (2) The anti-
symmetrization between core and outside particles is 
not properly taken into account. (3) As the Ne20 core 
shows a deviation from the rotational pattern, the strong-
coupling wave functions (5.8) are not the exact eigen-
functions of the Hamiltonian H (1) = H p+H2(-{-H^). 

The validity of the first two approximations can only 
by supported by the results. The effect of the last 
approximation is to give too low J and § states and to 
imply the use of differing intrinsic quadrupole moments 
for the different core states, at least in the calculation 
of quadrupole features of Ne21. 

(B) Comparison of the Two Methods 
of Calculation 

The SU$ classification scheme for Ne21 implies a 
thorough mixture of five particle states with / = 0 , 2, 
while the model employed here treats the fifth particle 
in terms of an extreme single particle picture. So neither 
of the two methods of calculation can represent the 
situation obtained in the SUz scheme and we can only 
use it as a rough guide. While the first case (a) follows 
the single particle picture in assuming, that first the 
j=§ shell is filled independently (the same assumption is 
used in the Nilsson model), the second method (b) tries 
to simulate the SUs situation more closely at the cost 
of taking into consideration an additional term of the 
Hamiltonian in the form of a 24—24 pole interaction. As 
we do not know the exact form of the intrinsic core func
tion and the appropriate coupling parameters / 2 and 
/4 , the estimates given in Sec. 5 are not too helpful. 

If we compare the results, we find that in both cases 
the f+ ground state contains approximately 99% of the 
/ = § state of the i = f , K—\ band, the f+ first excited 
state contains approximately 85% of the f state of this 
band, while the next well established state, the | + state 
at 2.79 MeV, shows a different composition in the two 
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cases: 

(a) 4 % ; = | , 9 6 % i = 4 ( a l l * - * ) 

(b) 6 1 % j « f , 2 1 % y=f , 1 8 % i = | ( a l lZ = | ) . 

Unfortunately, the £2 transition to the ground state 
is extremely weak: 

(a) B (£2 ; f -> J ) « 0.02 X 10~52 cm4 

(b) £ ( £ 2 ; i - * § ) ~ 0 . 2 X 1 0 - 5 2 c m 4 

(assuming equal QLL' ~3 .2X 10~25 cm2), so the transition 
seems to be mainly Ml. As the determination of the 
ratio of transition probabilities for E2 and Ml transi
tions is not too accurate, we have no possibility of dis
cerning the two cases from this point so far. Further
more by a choice of the QLU other than taking equal 
values [but within the limits given by Eq. (6.9) and 
Eq. (6.15)], we could obtain equal values of B (£2 ; § —* J) 
for the two cases. Similarly the E2 transition probability 
from the J + to the f+ first excited state is small and in 
fact has not been detected. The quadrupole moment of 
the ground state, the E2 transition of the f+ ground 
state to the f+ first excited state and the /3+ decay fea
tures from Na21 are well reproduced by both methods. 
The magnetic moment of the ground state can be fitted 
better in case (b) than in case (a), though we have only 
an admixture of 0.2% of the J=2 j — % K^i state in the 
first case. A decreasing value of gc for the core states 
with higher L instead of the uniform value employed in 
the calculation would improve the situation in case (a). 

As we used positive intrinsic quadrupole moments to 
fit the quadrupole moment of the ground state, we used 
a negative value of the coupling strength f% in case (a), 
while it has to be taken positive in case (b). The first 
sign corresponds to the usual choice of the sign of 
the quadrupole-quadrupole force in collective model 
calculations. 

Having only relatively scanty information about 
higher states in Ne21 and corresponding transitions, we 
come to the general conclusion, that we can not tell so 
far, which of the two modes of calculation gives a better 
picture of the actual situation. From the point of view 
of consistency one would favor the mode, which gives 
the smoothest variation of the parameters of the model, 
if we extend the calculation to neighboring nuclei in the 
same shell. 

(C) Comparison with the Collective Model 

In most cases in the s—d shell the Nilsson model fails 
to give the right magnitude of the El transition proba
bilities and the quadrupole moment of the ground state, 
once the deformation parameter rj is fixed to fit the spec
trum and (or) the magnetic moment of the ground state 
(see Ref. 31). This suggests that the illustrative picture 
of the nucleus as an ellipsoid is not quite correct at least 
in this region of the Periodic Table. 

The model employed here tries to avoid any classical 
picture with its consequences (particle j not a good 
quantum number in a cylindrical well). The Ne20 

ground-state band shows approximately the features of 
a quantum-mechanical spherical rotator. This is a 
statement on the angular part of the core wave function 
only. I t is conceivable, that the radial part of the core 
wave function gives the right magnitude of the measured 
intrinsic moments QLU by an appropriate coupling of 
the core particles. The coupling of this system with an 
ordinary shell-model particle gives strong-coupling wave 
functions as an intermediate step, if we use a body-fixed 
coordinate system. We find that the projection of the 
angular momentum of the particle on an intrinsic co
ordinate system K3- is a good quantum number. Here we 
had to assume, that the intrinsic core functions are the 
same for all the L states of the core. This condition is 
only approximately fulfilled in Ne20. 

In the further calculation the parameters of the 
coupling term of the Hamiltonian are treated essentially 
as free parameters, while all the core parameters CL, gc, 
QLL', can (at least in principle) be obtained from experi
ment. So we are sure, that the core effects are properly 
taken into account. 

The decoupling term of Hc [see Eq. (5.16)] is only a 
special case of the collective model form, as we are con
sidering the coupling of one single particle only. As 
pointed out before (Sec. 3), the coupling term between 
particle spin and angular momentum of the core removes 
the resulting degeneracy in the case of a j=\ particle. 

The choice of our parameters (5.23) corresponds to the 
usual Nilsson model parameters. 

(a) 7?== 1.67 K = 0 . 1 3 5 M = 0 ( w i t h / 2 < 0 ) 

(b) 77=3.18 /c=0.111 /x=0 ( w i t h / 2 > 0 ) , 

if we assume &o0=41 A~llz MeV= 14.86 MeV. So we 
find that the spin-orbit splitting D is larger than the 
values 1.50<Z><3.00 obtained from the usual choice of 
0 .05<K<0.10. As hcco decreases with increasing A, one 
would expect an increasing value of K with the filling of 
the shell rather than a constant value. If Kurath's re
sults for the variation of the parameter D in the p shell 
apply to the s—d shell, one would even expect a rapid 
variation of K in some part of the shell. The deformation 
parameter rj in case (a), which corresponds more closely 
to the Nilsson model calculation, is smaller than the 
values used by Bhatt31 (rj^3y 4) and Rakavy28 [e=0.48 
corresponding to rj(K=0.05) = 7, ??(K=0.10) = 3.5] for 
Ne21. 

In the model employed here we find that all the final 
Ne21eigenf unctions of the lower states have an admixture 
of more than 80% of one particular | JJ,K) state, but 
still do not show any rotational structure. In fact as 
long as the core states are of the form X0YLM and Q% 
is not equal to zero, we always obtain the strong cou
pling wave function (5.8) as an intermediate step, ir
respective of the coupling strength of 11^ 
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